Tris(4-nitrophenyl)amine - 20440-93-1

Tris(4-nitrophenyl)amine

Catalog Number: EVT-313674
CAS Number: 20440-93-1
Molecular Formula: C18H12N4O6
Molecular Weight: 380.3 g/mol
The product is for non-human research only. Not for therapeutic or veterinary use.
Price:

Product Introduction

Description

Tris(4-nitrophenyl)amine and its derivatives are a class of compounds that have garnered significant interest in the field of chemistry due to their unique electronic properties and potential applications in various domains. These compounds are characterized by their triarylamine core, which can be modified to include different substituents, such as nitro groups, that can alter their photophysical and electrochemical behaviors. The studies on these compounds have explored their mechanisms of action and applications ranging from two-photon absorption for bioimaging to their role as electron transfer mediators in oxidation reactions12.

Mechanism of Action

The mechanism of action of tris(4-nitrophenyl)amine derivatives is primarily centered around their electronic properties. For instance, tris(4'-nitrobiphenyl)amine, an octupolar chromophore, exhibits high two-photon absorption (2PA) performance due to its structure, which includes three nitro peripheral groups attached to a triphenylamine core. This structure allows for significant electronic delocalization, which is essential for its 2PA behavior. The compound's high fluorescence quantum yield and favorable 2PA cross-section make it a promising candidate for two-photon (2P) bioimaging1. Similarly, the redox-active tris[4-(pyridin-4-yl)phenyl]amine ligand demonstrates a one-electron oxidation to its radical cation when incorporated into a metal-organic framework (MOF), with the radical being highly delocalized throughout the ligand backbone. This property is crucial for the electronic delocalization in the framework system3.

Applications in Various Fields

Material Science

In material science, the high two-photon absorption cross-section of tris(4'-nitrobiphenyl)amine makes it suitable for applications such as the development of novel photoprobes for bioimaging. Its ability to absorb light in the near-infrared region and subsequently emit fluorescence is particularly useful for imaging applications that require deep tissue penetration1.

Biological Science

The derivatives of tris(4-nitrophenyl)amine have been utilized in biological applications, such as the uncaging of calcium ions. The uncaging process is facilitated by the compound's photophysical properties, which allow for the release of Ca2+ ions upon exposure to light. This has implications for studying cellular processes where calcium signaling plays a crucial role1.

Electrochemistry

In the field of electrochemistry, tris(4-bromophenyl)amine has been shown to be an effective electron transfer mediator for the indirect oxidation of amines. This property is leveraged to convert benzyl amines to Schiff bases with high yield, demonstrating the compound's potential in synthetic chemistry applications2.

Polymer Science

Star-shaped tris(4-(thiophen-2-yl)phenyl)amine derivatives have been developed as photoinitiators for radical and cationic polymerizations. These compounds exhibit high polymerization efficiencies under air and are capable of overcoming oxygen inhibition, which is a common challenge in photopolymerization processes. Their performance under near-UV and visible light-emitting diodes (LEDs) makes them valuable for LED-induced polymerization applications4.

Properties

CAS Number

20440-93-1

Product Name

Tris(4-nitrophenyl)amine

IUPAC Name

4-nitro-N,N-bis(4-nitrophenyl)aniline

Molecular Formula

C18H12N4O6

Molecular Weight

380.3 g/mol

InChI

InChI=1S/C18H12N4O6/c23-20(24)16-7-1-13(2-8-16)19(14-3-9-17(10-4-14)21(25)26)15-5-11-18(12-6-15)22(27)28/h1-12H

InChI Key

LSNJBIDKQIRWRQ-UHFFFAOYSA-N

SMILES

C1=CC(=CC=C1N(C2=CC=C(C=C2)[N+](=O)[O-])C3=CC=C(C=C3)[N+](=O)[O-])[N+](=O)[O-]

Synonyms

4,4’,4’’-Trinitrotriphenylamine; 4-Nitro-N,N-bis(4-nitrophenyl)benzenamine;

Canonical SMILES

C1=CC(=CC=C1N(C2=CC=C(C=C2)[N+](=O)[O-])C3=CC=C(C=C3)[N+](=O)[O-])[N+](=O)[O-]

Product FAQ

Q1: How Can I Obtain a Quote for a Product I'm Interested In?
  • To receive a quotation, send us an inquiry about the desired product.
  • The quote will cover pack size options, pricing, and availability details.
  • If applicable, estimated lead times for custom synthesis or sourcing will be provided.
  • Quotations are valid for 30 days, unless specified otherwise.
Q2: What Are the Payment Terms for Ordering Products?
  • New customers generally require full prepayment.
  • NET 30 payment terms can be arranged for customers with established credit.
  • Contact our customer service to set up a credit account for NET 30 terms.
  • We accept purchase orders (POs) from universities, research institutions, and government agencies.
Q3: Which Payment Methods Are Accepted?
  • Preferred methods include bank transfers (ACH/wire) and credit cards.
  • Request a proforma invoice for bank transfer details.
  • For credit card payments, ask sales representatives for a secure payment link.
  • Checks aren't accepted as prepayment, but they can be used for post-payment on NET 30 orders.
Q4: How Do I Place and Confirm an Order?
  • Orders are confirmed upon receiving official order requests.
  • Provide full prepayment or submit purchase orders for credit account customers.
  • Send purchase orders to sales@EVITACHEM.com.
  • A confirmation email with estimated shipping date follows processing.
Q5: What's the Shipping and Delivery Process Like?
  • Our standard shipping partner is FedEx (Standard Overnight, 2Day, FedEx International Priority), unless otherwise agreed.
  • You can use your FedEx account; specify this on the purchase order or inform customer service.
  • Customers are responsible for customs duties and taxes on international shipments.
Q6: How Can I Get Assistance During the Ordering Process?
  • Reach out to our customer service representatives at sales@EVITACHEM.com.
  • For ongoing order updates or questions, continue using the same email.
  • Remember, we're here to help! Feel free to contact us for any queries or further assistance.

Quick Inquiry

 Note: Kindly utilize formal channels such as professional, corporate, academic emails, etc., for inquiries. The use of personal email for inquiries is not advised.