NANP Human

N-Acetylneuraminic Acid Phosphatase Human Recombinant

Recombinant human NANP, expressed in E. coli, is a purified protein with a 36 amino acid His tag added to the N-terminus. This single, non-glycosylated polypeptide chain contains 284 amino acids (residues 1-248) and has a molecular weight of 31.9 kDa. The purification process utilizes proprietary chromatographic methods.
Shipped with Ice Packs
Cat. No.
BT29507
Source
Escherichia Coli.
Appearance
A clear, colorless solution that has been sterilized by filtration.

PAP Human

Prostate Acid Phosphatase Human

Human Prostate Acid Phosphatase is derived from pooled human seminal fluid and possesses a molecular mass of approximately 100 kDa.
Shipped with Ice Packs
Cat. No.
BT29582
Source

Pooled human seminal fluid.

Appearance
This product appears as a sterile, filtered, white lyophilized (freeze-dried) powder.
Definition and Classification

Phosphatases are a group of enzymes that catalyze the removal of phosphate groups from molecules, a process known as dephosphorylation. They play a crucial role in various cellular processes by regulating the phosphorylation state of proteins and other molecules. Phosphatases are broadly classified into two main categories:

  • Protein Phosphatases: These enzymes specifically target phosphorylated amino acid residues in proteins. They are further divided into:
    • Serine/Threonine Phosphatases: Target serine or threonine residues.
    • Tyrosine Phosphatases: Target tyrosine residues.
    • Dual-Specificity Phosphatases: Can target both serine/threonine and tyrosine residues.
  • Non-Protein Phosphatases: These enzymes act on non-protein substrates, such as nucleotides, sugars, and lipids.
Biological Properties

Key Biological Properties:

  • Catalytic Activity: Phosphatases hydrolyze phosphate esters, releasing inorganic phosphate.
  • Substrate Specificity: They exhibit specificity for their substrates, which can be proteins, nucleotides, or other molecules.

Expression Patterns:

  • Phosphatases are ubiquitously expressed in various tissues and cell types, with specific isoforms showing distinct expression patterns.

Tissue Distribution:

  • Protein Phosphatases: Widely distributed across tissues, with high expression in the brain, liver, and muscles.
  • Non-Protein Phosphatases: Found in various tissues, depending on their specific substrates.
Biological Functions

Primary Biological Functions:

  • Regulation of Signal Transduction: Phosphatases modulate signaling pathways by dephosphorylating key signaling molecules.
  • Cell Cycle Control: They play a role in cell cycle progression by regulating the phosphorylation state of cell cycle proteins.
  • Metabolic Regulation: Phosphatases are involved in metabolic pathways by dephosphorylating metabolic enzymes.

Role in Immune Responses:

  • Phosphatases regulate immune cell activation and function by modulating signaling pathways involved in immune responses.

Pathogen Recognition:

  • Some phosphatases are involved in recognizing and responding to pathogen-associated molecular patterns (PAMPs), contributing to the immune defense.
Modes of Action

Mechanisms with Other Molecules and Cells:

  • Phosphatases interact with various molecules, including proteins, lipids, and nucleotides, to exert their dephosphorylation activity.

Binding Partners:

  • They often form complexes with other proteins, which can regulate their activity and substrate specificity.

Downstream Signaling Cascades:

  • By dephosphorylating key signaling molecules, phosphatases influence downstream signaling pathways, affecting cellular responses such as proliferation, differentiation, and apoptosis.
Regulatory Mechanisms

Regulatory Mechanisms:

  • Transcriptional Regulation: The expression of phosphatases is regulated at the transcriptional level by various transcription factors and signaling pathways.
  • Post-Translational Modifications: Phosphatases themselves can be regulated by post-translational modifications, such as phosphorylation, ubiquitination, and methylation, which can alter their activity, stability, and localization.
Applications

Biomedical Research:

  • Phosphatases are studied to understand their role in various diseases, including cancer, diabetes, and neurodegenerative disorders.

Diagnostic Tools:

  • Phosphatase activity assays are used in diagnostic tests to measure enzyme activity in biological samples, aiding in the diagnosis of certain diseases.

Therapeutic Strategies:

  • Inhibitors of specific phosphatases are being developed as potential therapeutic agents for diseases where phosphatase activity is dysregulated.
Role in the Life Cycle

Role Throughout the Life Cycle:

  • Development: Phosphatases are involved in embryonic development by regulating signaling pathways that control cell differentiation and tissue formation.
  • Aging: Changes in phosphatase activity have been associated with aging and age-related diseases, such as Alzheimer’s disease.
  • Disease: Dysregulation of phosphatase activity is implicated in various diseases, including cancer, where altered phosphorylation states can lead to uncontrolled cell growth and proliferation.
© Copyright 2024 Thebiotek. All Rights Reserved.