Recombinant Proteins

p53
LBP
CEA
HLA
TCL
TTC
NPM
MAF
Bax
BID

NCF1 Human

Neutrophil Cytosolic Factor 1 Human Recombinant

Recombinant Human NCF1, expressed in E. coli, is a single, non-glycosylated polypeptide chain with a molecular weight of 45.7 kDa. It consists of 398 amino acids, with residues 1-390 representing the NCF1 sequence. An 8-amino acid His-tag is fused to the C-terminus to facilitate purification, which is achieved through proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18021
Source
Escherichia Coli.
Appearance
A clear and colorless solution that has been sterilized by filtration.

NCF4 Human

Neutrophil Cytosolic Factor 4 Human Recombinant

Recombinant human NCF4, expressed in E. coli, is a purified, non-glycosylated polypeptide chain consisting of 359 amino acids (with the first 339 being the native sequence) and a molecular weight of 41.1 kDa. The protein includes an N-terminal 20 amino acid His-tag for purification.
Shipped with Ice Packs
Cat. No.
BT18102
Source
Escherichia Coli.
Appearance
A clear, colorless, and sterile-filtered solution.
Definition and Classification

Neutrophil Cytosolic Factor (NCF) refers to a group of proteins that are integral components of the NADPH oxidase complex, which is crucial for the immune response. The primary members of this group include NCF1 (p47-phox), NCF2 (p67-phox), and NCF4 (p40-phox) . These proteins are classified based on their role in the assembly and activation of the NADPH oxidase complex, which produces reactive oxygen species (ROS) to combat pathogens .

Biological Properties

Key Biological Properties: NCF proteins are cytosolic components that translocate to the membrane upon activation. They are essential for the production of superoxide anions, a type of ROS .

Expression Patterns: NCF proteins are predominantly expressed in phagocytic cells, such as neutrophils and macrophages .

Tissue Distribution: These proteins are found in various tissues, with high expression levels in the bone marrow, spleen, and blood, reflecting their role in the immune system .

Biological Functions

Primary Biological Functions: The primary function of NCF proteins is to facilitate the assembly and activation of the NADPH oxidase complex, leading to the production of ROS . These ROS are crucial for the destruction of pathogens during the immune response .

Role in Immune Responses: NCF proteins play a vital role in the innate immune response by enabling phagocytes to produce ROS, which are used to kill bacteria and fungi .

Pathogen Recognition: Through the production of ROS, NCF proteins help in recognizing and eliminating pathogens, thereby preventing infections .

Modes of Action

Mechanisms with Other Molecules and Cells: NCF proteins interact with other components of the NADPH oxidase complex, including the membrane-bound cytochrome b558 . Upon activation, NCF proteins translocate to the membrane and form a functional enzyme complex .

Binding Partners: NCF1 (p47-phox) interacts with NCF2 (p67-phox) and NCF4 (p40-phox) to form a complex that binds to the membrane-bound components of NADPH oxidase .

Downstream Signaling Cascades: The activation of NADPH oxidase leads to the production of ROS, which are involved in various signaling pathways that regulate immune responses and inflammation .

Regulatory Mechanisms

Expression and Activity Control: The expression and activity of NCF proteins are regulated at multiple levels, including transcriptional and post-translational modifications .

Transcriptional Regulation: The transcription of NCF genes is regulated by various cytokines and growth factors that modulate the immune response .

Post-Translational Modifications: NCF proteins undergo phosphorylation, which is essential for their activation and translocation to the membrane .

Applications

Biomedical Research: NCF proteins are studied extensively in the context of immune responses and inflammatory diseases .

Diagnostic Tools: Mutations in NCF genes are associated with chronic granulomatous disease (CGD), and genetic testing for these mutations is used in the diagnosis of CGD .

Therapeutic Strategies: Understanding the role of NCF proteins in immune responses has led to the development of therapies aimed at modulating their activity to treat inflammatory and autoimmune diseases .

Role in the Life Cycle

Development: NCF proteins are crucial for the development of functional neutrophils in the bone marrow .

Aging and Disease: The activity of NCF proteins can be altered in aging and various diseases, leading to impaired immune responses and increased susceptibility to infections .

Disease: Mutations in NCF genes can lead to chronic granulomatous disease, characterized by recurrent infections and inflammation due to defective ROS production .

© Copyright 2024 Thebiotek. All Rights Reserved.